97 research outputs found

    Population structure promotes the evolution of costly sex in artificial gene networks

    Get PDF
    We build on previous observations that Hill–Robertson interference generates an advantage of sex that, in structured populations, can be large enough to explain the evolutionary maintenance of costly sex. We employed a gene network model that explicitly incorporates interactions between genes. Mutations in the gene networks have variable effects that depend on the genetic background in which they appear. Consequently, our simulations include two costs of sex—recombination and migration loads—that were missing from previous studies of the evolution of costly sex. Our results suggest a critical role for population structure that lies in its ability to align the long- and short-term advantages of sex. We show that the addition of population structure favored the evolution of sex by disproportionately decreasing the equilibrium mean fitness of asexual populations, primarily by increasing the strength of Muller's Ratchet. Population structure also increased the ability of the short-term advantage of sex to counter the primary limit to the evolution of sex in the gene network model—recombination load. On the other hand, highly structured populations experienced migration load in the form of Dobzhansky–Muller incompatibilities, decreasing the effective rate of migration between demes and, consequently, accelerating the accumulation of drift load in the sexual populations

    Recombination drives the evolution of mutational robustness

    Get PDF
    Recombination can impose fitness costs as beneficial parental combinations of alleles are broken apart, a phenomenon known as recombination load. Computational models suggest that populations may evolve a reduced recombination load by reducing either the likelihood of recombination events (bring interacting loci in physical proximity) or the strength of interactions between loci (make loci more independent of one another). We review evidence for each of these possibilities and their consequences for the genotype–fitness relationship. In particular, we expect that reducing interaction strengths between loci will lead to genomes that are also robust to mutational perturbations, but reducing recombination rates alone will not. We note that both mechanisms most likely played a role in the evolution of extant populations and that both can result in the frequently observed pattern of physical linkage between interacting loci

    The emergence of performance trade-offs during local adaptation: insights from experimental evolution

    Get PDF
    Environmental heterogeneity is considered a general explanation for phenotypic diversification, particularly when heterogeneity causes populations to diverge via local adaptation. Performance trade-offs, such as those stemming from antagonistic pleiotropy, are thought to contribute to the maintenance of diversity in this scenario. Specifically, alleles that promote adaptation in one environment are expected to promote maladaptation in alternative environments. Contrary to this expectation, however, alleles that underlie locally adaptive traits often fail to exhibit fitness costs in alternative environments. Here, we attempt to explain this paradox by reviewing the results of experimental evolution studies, including a new one of our own, that examined the evolution of trade-offs during adaptation to homogeneous versus heterogeneous environments. We propose that when pleiotropic effects vary, whether or not trade-offs emerge among diverging populations will depend critically on ecology. For example, adaptation to a locally homogeneous environment is more likely to occur by alleles that are antagonistically pleiotropic than adaptation to a locally heterogeneous environment, simply because selection is blind to costs associated with environments that are not experienced locally. Our literature review confirmed the resulting prediction that performance trade-offs were more likely to evolve during selection in homogeneous than heterogeneous environments. The nature of the environmental heterogeneity (spatial versus temporal) and the length of the experiment also contributed in predictable ways to the likelihood that performance trade-offs evolved

    Kin selection and parasite evolution: Higher and lower virulence with hard and soft selection

    Get PDF
    Conventional models predict that low genetic relatedness among parasites that coinfect the same host leads to the evolution of high parasite virulence. Such models assume adaptive responses to hard selection only. We show that if soft selection is allowed to operate, low relatedness leads instead to the evolution of low virulence. With both hard and soft selection, low relatedness increases the conflict among coinfecting parasites. Although parasites can only respond to hard selection by evolving higher virulence and overexploiting their host, they can respond to soft selection by evolving other adaptations, such as interference, that prevent overexploitation. Because interference can entail a cost, the host may actually be underexploited, and virulence will decrease as a result of soft selection. Our analysis also shows that responses to soft selection can have a much stronger effect than responses to hard selection. After hard selection has raised virulence to a level that is an evolutionarily stable strategy, the population, as expected, cannot be invaded by more virulent phenotypes that respond only to hard selection. The population remains susceptible to invasion by a less virulent phenotype that responds to soft selection, however. Thus, hard and soft selection are not just alternatives. Rather, soft selection is expected to prevail and often thwart the evolution of virulence in parasites. We review evidence from several parasite systems and find support for soft selection. Most of the examples involve interference mechanisms that indirectly prevent the evolution of higher virulence. We recognize that hard selection for virulence is more difficult to document, but we take our results to suggest that a kin selection model with soft selection may have general applicability

    Evolutionary pathways to NS5A inhibitor resistance in genotype 1 hepatitis C virus

    Get PDF
    Direct-acting antivirals (DAAs) targeting NS5A are broadly effective against hepatitis C virus (HCV) infections, but sustained virological response rates are generally lower in patients infected with genotype (gt)-1a than gt-1b viruses. The explanation for this remains uncertain. Here, we adopted a highly accurate, ultra-deep primer ID sequencing approach to intensively study serial changes in the NS5A-coding region of HCV in gt-1a- and gt-1b-infected subjects receiving a short course of monotherapy with the NS5A inhibitor, elbasvir. Low or undetectable levels of viremia precluded on-treatment analysis in gt-1b-infected subjects, but variants with the resistance-associated substitution (RAS) Y93H in NS5A dominated rebounding virus populations following cessation of treatment. These variants persisted until the end of the study, two months later. In contrast, while Y93H emerged in multiple lineages and became dominant in subjects with gt-1a virus, these haplotypes rapidly decreased in frequency off therapy. Substitutions at Q30 and L31 emerged in distinctly independent lineages at later time points, ultimately coming to dominate the virus population off therapy. Consistent with this, cell culture studies with gt-1a and gt-1b reporter viruses and replicons demonstrated that Y93H confers a much greater loss of replicative fitness in gt-1a than gt-1b virus, and that L31M/V both compensates for the loss of fitness associated with Q30R (but not Y93H) and also boosts drug resistance. These observations show how differences in the impact of RASs on drug resistance and replicative fitness influence the evolution of gt-1a and gt-1b viruses during monotherapy with an antiviral targeting NS5A. © 2018 Elsevier B.V

    Predicting evolution and visualizing high-dimensional fitness landscapes

    Full text link
    The tempo and mode of an adaptive process is strongly determined by the structure of the fitness landscape that underlies it. In order to be able to predict evolutionary outcomes (even on the short term), we must know more about the nature of realistic fitness landscapes than we do today. For example, in order to know whether evolution is predominantly taking paths that move upwards in fitness and along neutral ridges, or else entails a significant number of valley crossings, we need to be able to visualize these landscapes: we must determine whether there are peaks in the landscape, where these peaks are located with respect to one another, and whether evolutionary paths can connect them. This is a difficult task because genetic fitness landscapes (as opposed to those based on traits) are high-dimensional, and tools for visualizing such landscapes are lacking. In this contribution, we focus on the predictability of evolution on rugged genetic fitness landscapes, and determine that peaks in such landscapes are highly clustered: high peaks are predominantly close to other high peaks. As a consequence, the valleys separating such peaks are shallow and narrow, such that evolutionary trajectories towards the highest peak in the landscape can be achieved via a series of valley crossingsComment: 12 pages, 7 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (A. Engelbrecht and H. Richter, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
    corecore